<table>
<thead>
<tr>
<th>IDEAL Framework</th>
<th>IDEAL Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-IDEAL (IDEAL Stage 0)
Pre-clinical</td>
<td>Pre-IDEAL was not described in original IDEAL framework, but its’ necessity has since been recognised

Purpose: To evaluate the need for, definition, feasibility and safety of procedure or device

Number & Types of Patients: None: pre-clinical

Number & Types of Surgeons: Very few; innovators; often non-surgical

Output: Description of aspects of addressing:
- Whether there is a clinical or health economic need for the new intervention
- Whether intended goal of procedure can be accomplished
- Ergonomic performance, reliability and durability of devices
- Safety risks, including toxicity, allergy, mutagenicity and other risks defined by regulators

Method: Various, including simulator, cadaver, animal, modelling and cost-effectiveness studies

Stage Endpoint: Any studies that could avoid predictable risks of failure or harm to the first human should have been conducted.</td>
</tr>
<tr>
<td>Stage 1
Idea
First in human</td>
<td>Purpose: Proof of concept

Number & Types of Patients: Single digit; highly selective.

Number & Types of Surgeons: Very few; innovators®

Output: Description of intervention and outcome

Intervention: Evolving; procedure inception in human subjects

Methods: Structured case reports

Outcomes Reported: Proof of concept; technical performance; adverse events, subjective surgeon views of the procedure

Stage Endpoint: Outcomes will determine whether to proceed to stage 2a.</td>
</tr>
</tbody>
</table>
| Stage 2a Development | Purpose: Development of procedure to stable version
Number & Types of Patients: Few; Selected
Number & Types of Surgeons: Few; innovators and early adopters
Output: Technical description of procedure and its development with reasons for and outcomes of changes in technique or indications
Intervention: Evolving; procedure development
Methods: Prospective development studies
Outcomes: Technical and procedural success, any adverse events, short term clinical outcomes |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage Endpoint: Stage 2a ends when operators do not see potential for further iterative improvement</td>
<td></td>
</tr>
</tbody>
</table>

- Make protocol for study available
- Use standard well-defined measures for reporting outcome and patient characteristics
- Report and explain all exclusions
- Report all cases consecutively, with annotation and explanation of when and why changes to indication or procedure took place.
- Display main outcomes graphically to illustrate the above.

| Stage 2b Exploration | Purpose: Achieving consensus on procedure definition envelope and indications so that an RCT can be considered
Number & Types of Patients: Many; broadening indication to include all potential beneficiaries
Number & Types of Surgeons: Many; innovators, early adopters, early majority
Output: Main Effect estimate based on large sample; Development and validation of measures of delivery quality; Analysis of operator learning curves using these; Analysis of impact of pre-specified technical variants and patient subgroups on outcome.
Intervention: Stable; acceptable variants defined
Method: Prospective multi-centre exploration cohort study (disease or treatment based); pilot/feasibility multicentre RCTs. Inclusion of qualitative studies of values and attitudes
Outcomes: Safety; clinical outcomes (specific/graded); quality measures, learning curves, short-term outcomes; patient centred reported outcomes; feasibility outcomes; qualitative evaluation of attitudes and values of investigators and patients |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage Endpoints: fall in to two main groups; Demonstrate that technique can be more widely adopted; and, Demonstrate that progression to RCT is desirable and feasible</td>
<td></td>
</tr>
</tbody>
</table>

- Make protocol for study available
- Use standard well-defined measures for reporting outcome and patient characteristics
- Participate in collaborative multi-centre co-operative data collection, incorporating feasibility issues such as:
 - estimating effect size,
 - defining intervention quality standards,
 - evaluating learning curves,
 - exploring subgroup differences,
 - eliciting key stakeholder values and preferences,
 - analysis of adverse events:
- Pre-planned consensus meeting prior to progressing to an RCT to identify feasibility and ability to recruit, intervention and comparator definitions, appropriate patient selection criteria, primary endpoint.
| Stage 3 | Purpose: Comparative effectiveness testing
Number & Types of Patients: Many; expanded indications (well-defined)
Number & Types of Surgeons: Many; early majority
Output: Comparison with current standard therapy
Intervention: Stable
Method: RCT with or without additions/modifications; alternative designs (cluster, preference RCTs, stepped wedge, adaptive designs)
Outcomes: Clinical outcomes (specific and graded); potentially Patient Reported outcomes, Health Economic outcomes
Stage Endpoints: two main endpoints; Clear valid evidence on relative effectiveness of innovation; and, Identification of issues requiring long term monitoring. |
- Register on an appropriate international register (e.g., clinicaltrials.gov)
- Use standard well-defined measures for reporting outcome and patient characteristics
- Incorporate information about patient and clinician values and preferences in consent information and outcome measure design
- Reporting guidelines: CONSORT update of 2010 with extension for non-pharmacological treatments
COMET
TIDieR
SPIRIT (for RCT protocol design) |
| Stage 4 | Purpose: Surveillance
Number & Types of Patients: All eligible
Number & Types of Surgeons: All eligible
Output: Description; audit; regional variation; quality assurance; risk adjusted evaluation
Intervention: Stable
Method: Registry; routine database; rare-case reports; linked administrative/clinical datasets, other “Real World Evidence”
Outcomes: Rare events; long-term outcomes; quality assurance
Registries for devices – IDEAL-D
Registries at earlier stages of IDEAL |
- Registries may begin from the earliest stages of human use
- Registry datasets should be defined by the clinical community with patient input
- Datasets should be simple, cheap and easy to collect
- Curation of registries by clinical community is desirable
- Funding of registries should be agreed between government and commercial interests but kept separate from curation
- Consent for use of registry data in research should be broad and where possible automatic
- Studies based on Real World Evidence should clearly define dataset completeness, recording methods, data collection methods, funding, and curation |
@ Terms used under this heading refer to the classification of Everett Rogers (Diffusion of Innovations, 4th Ed, 1995)
*Registries should be organised according to the IDEAL recommendations and should be available for enrolment at any Stage
**Patient consent should always include outcomes from previous IDEAL Stage
Items in purple relate to clarifications in Framework added since 2009 publication.

Professional societies
- Ensure guidelines explicitly support IDEAL model of technical development and evaluation
• Require members to use appropriate registers for the various stages of innovation as a condition of specialist recognition