| Supplementary Table 1: Perfusion asses | ment in CABG | | | | | | | | | | | | | | | | | | |--|----------------------------|--|---|-------------------|--|---------------------------------------|--|---|---|---|--|--|---|-----------------|---|--|---|---| | Ref. No. Author Count | y Journal | Patient selection Year Study design Subject | N (caus) | Flaorogenic agen | st Dose | Imaging techniques
Route | Timing | Imaging system | Quantitative measurement | et Main endpoints | Imaging accuracy/success rate | Endpoint measures CEnical impact, changes in intraoperative decision-making | Clinical impact, advantages in postoperative outcomes | Adverse effects | Learning curve | Cost analysis | Other comments | Ref. detail | | I Rubens Canada | Heart Surg Forum | 2002 Prospective CABG or MIDCAB | 20 | EG | 0.5 mL (0.5-5.0 mg/mL) 1 | v | IV, via the antegrade
cardioplogia cansula, or via th
cardiopalmonary hypass circu | A portal laser
he diode/infrared
sit camera device | NA | Visualization of coronary
anatomy and grafts | 90% | 5% graft revision | NA | Ness | NA NA | NA | | Rubens FD, Eucl M, Fromos SE. A
new and simplified method for
coronary and graft imaging during
CABG. Heart Surg Focum.
2002;5(2):141-144. | | 2 Balacemarawami UK | J Thorac Cardiovasc Sorg | 2004 Prospective CABG (see- and off-pump) | 200 (533 conduits) | BCG | InL(0.03mg/kg weight) | v | Into the oxygenator in the
ONCABG group or through it
control venous line in the
OPCABG group | he SPY Novadaq | NA | Assessment of intraoperative graft patency | 90% in patient, 90% in graft | Tight (1.5%) guils in E (4%) patients demonstrated no fluorescence within the conduits thereign target explaints. The excluded grafts were revised, after which the grafts were eximaged and patency was confirmed with the EF system. | NA | None | NA | NA | Our previously reported
preliminary experience of \$4
partients is included in this stud | Balacumanowani L, Abu-Omar Y,
Anastasiada K, et al. Does off-pump
total arterial grafting increase the
incidence of intraoperative graft
failure? J Thorac Cardovase Surg.
2004;128(2):238-244. | | 3 Routhebuch Switzerland | Chest | 2004 Рекорастіч — Об-ратр САВС, конопиция | 38 (124 grafts) | 1CG | 1.25-2.5mg | v | Through the central venous li | ne SPY Novadaq | NA | Assessment of the quality of anatomoses and grafts | 50% | 5% graft revision | NA | None | NA | NA | | Routhsbuch O, Häussler A, Genoni
M, et al. Novading 5PP:
intenoperative quality assessment in
off-pump coronary artery bypass
grafting. Chort. 2004;125(2):418-
424.
Takabashi M. Ishikawa T. | | 4 Takahashi Jupan | Interact Cardiovasc Thorac | Surg 2004 Prospective Off-pump CABGES MIDCAII, 64 OPCAII) | 72 (290 dietal anastomosus) | EG | 2.5 mg | v | late the central vanous line | SPY Novadaq | NA | Visualization of anastomoscs | 990% | 1.4% graft revision | NA | None | NA | In Europe, the cost of the
procedure may be around 200-
350 e. This will include use of
the device, KG and the drape. | | Higashidani K, Katoh H. SPY: an
innovative intra-operative imaging
system to evaluate graft patnoxy
during off-pump cornusy artisty
bypass grafting. Interact Cardiovasc
Thorac Surg. 2004;3(3):479-483. | | 5 Italacumarawami UK | J Thorac Cardiovasc Surg | 2005 Prospective CABG (so- and eff-pump) | 100 (266 bypass grafts) | ECG | ini, 0.03mgkg | v | late the oxygenator in the
ONCAHG group or through it
control venues line in the
OPCAHG group | | Poor flow with the
introsperative floorescence
imaging system was defined
if there was an absence of
floorescence or if it did not
appear within 15 seconds in
the graft. | d
Assessment of graft patency | 241(91%) grafts in 25(25%) parkents had good flow in both IIT and TITM. 10(3.5%) graft
in 10(10%) parkens had good flow only in IIT, are TITM. No grafts had poor IIT flow but
good TITM flow. | Both introsporative fluorescence imaging and transl-time flownessty confirmed persistence in a 170's graft in a 180's parties that according graft review. Bower, it is a 180's parties to a more dear flowness principles of the state of 180's parties, manufactured persistent p | e
a
7 NA | None | NA | NA | Comparison of IFI with TTFM | Billicumanersani L. Abo-Omar Y. Choudhay H. Pipot D. Taggar IDP. A comparison of transiv-time flowmerty and intraspentive flownersy and intraspentive flownerscence imaging for assessing contenty satiry byposs graff patency. J Thenac Cadinomac San. 2005;130(2):315-320. Yasada T. Watanab G. Tomita S. | | 6 Yasuda Jupun | J Thorac Cardiovasc Surg | 2005 Prospective OPCAB (LITA-LAD graft) | 10 (10 grafts) | BCG | 2mL I | v | Directly into the ascending as
just below the brachiocephali-
artery | ota
c SPY Novadaq | NA | Assessment of a LITA graft | 500% for anastomesis | NA | NA | None | NA | NA | | Transacric injection technique in
fluorescence imaging: novel
introoperative assessment of
anastomesis in off-pump ceremary
artray hyposs grafting. J Thorac
Cardiovase Surg. 2015;130(2):560–
541. | | 7 Decei Cassela | J Arn Coll Cardiol | 2005 Peroperties CASO (see and elf-grave) | 120 (748 gm/hs) | 10G | In-situ grafts co-pump (2.5 mg injection late asersic cannulu; In-situ grafts off-pump (1.25 mg injection lates central venous late); Proe grafts distul anasteneous (8.0125 mg direct graft injection). Proe grafts president anasteneous (1.25 mg injection late central venous lite after aft | V, or aoric cannola/graft
njection | Injection into nortic cannolla e
cuntral veness line / direct ger
injection before proximal
anastormesis construction | or
aft SPY Novadaq | NA | Vienalization of assessmence | Sometriety and specificity of the KCG anging state for graft states on 50% was 100% | 4.25 major graft revisions and 3.75 minor revisions | NA | None | Inter-rater agreement among is
surgiouse, one experienced an
one inexperienced with the
technique, was 100% for
assessing test agreed occlusion
and 97% for assessing graft
revisions when 25 ECG
angiograms were neviewed of
line. (TMI 60%) | NA | As part of a pilot study irrestigation for RCT, six parience, with a total of 22 byp grafts, underwent post-operativ X-ray angiography. | Donal ND, Mires S, Kodanss D, et al.
Imprecing the quality of coronary
sees and companies of a new
sees and control of a new
sees and control of a new
seedings. J Am Colf Candel.
2005;46(8):1521-1525. | | B Decoi Cassada | J Thorac Cardiovasc Surg | Prospective 200 (volta-paint CASG (see and eff-pump, dentitive and segue) inclinations(s) | 106 (139 gm/hs) | 106 | In-thu grafts on-pump (2.5mg injection into aordic cannula; In-thin grafts off-pump (1.25 mg injection into acettal venous line); Pose grafts definal anasteneous (6.0725 mg direction); Pose grafts proximal zamonosois (1.25 mg injection into-central venous line after aft | V, or aorie cannula/graft
njection | Injection into aortic cannula e
central venous line / direct gri
injection before proximal
anastomesia construction | or
aft SPY Novadeq | NA | Assoument of grafts | Sometriery, specificity, FFV, and NPV of ICG anging-poly to desire general data 50% software or exclusions was \$13.76, \$100%, \$100%, and \$6.4% (TF), 25%, \$6.4%, 60%, and \$2.5% (TF), 25%, \$6.4%, \$6.5%, and \$1.5% \$6.5%, \$6.5 | $KGA again palphase described 10 (7.7%) godd menn including 7 mers \theta at TTT minut. $ | There were assignificant difference in classical outcomes between the state of the control parties and those who underwent very angiographs | None | NA | NA | Comparison of III with TIPM
and x-tay magiography, IIT
provides significantly better
diagnostic accuracy for dated
chincally adjection graft one
than does TIPM | Deal ND, Mova S, Kodama D, et al.
A randomized comparison of
intersepurative index-yasine game
angiography and transit size floor
control increased by the size of the
errors in correctly bypass gards. J
Thorac Cardiovasc Surg.
2006;132(3):585-594. | | 9 Handa Japan | Interact Cardiovasc Thorac | Surg 2009 Prospectiva Indas OPCAB | 49 (116 grafts) | ECG | | v | NA | an ultra-high
sensitive CCD
image sensor | f
Fluorescence intensity | Assessment of graft and perfusion | The sensitivity and the specificity of ECG angiography for graft failure was 100% and 900 (TTM, 50% and 6%). | ^{7%} 1.7% graft revision | The sensitivity and the specificity of NCG angiography for graft failure was 100% and 500% (TTM, 93% and 6%). | None | NA | NA | Comparison of IFI with TTPM | Handa T, Katan RG, Sasaguri S,
San T. Porliminary experience for
the coulaution of the intemperative
gard pastings with read color chappe-
coupled device camera system: an
advanced device for sinshaneous
capturing of color and nane-intured
images during coronary astry bypass
gard, Internet Caralforniae Thorac
Sung. 2009;9(2):159-154. | | 10 Wasada US | JACC Cardiovasc Imaging | 2009 Prospective Off-pump CABG | 137 (907 gmfs) | BCG | 0.625mg | v | Through a central venous catheter | 59Y Novadoq | In off-line IFI analysis, the
graft weahout was classified
based on the number of
heartheast required for
indocyunine green washout
fast weahout (~15 beans)
and slow weahout (~15
beans). | | 279 (75%) grafts were visualized clearly up to the dottal anaeconoesis. | 1% graft revision | 21 grafts with usuarisfactory transit time flowmenty totals
demonstrated acceptable patency with III. Graft revision was
considered unaccossary in these grafts, and 20 grafts (97%) were
patent by post-operative X-my angiography. | None | NA | NA | Comparison of III to TIFM at
X-ray angiography | Waseds K, Ako J, Hasegawa T, et al.
Introsperative fluoroscence imaging
of system for on-site association of off-
pump conouncy afterly hyposis graft.
JACU Cardiovasc Imaging.
2009;2(5):604-612. | | II Singh Canada | J Thorac Cardiovasc Surg | 2019 RCT CARG (no end off-group) | 78 (234 grafts), +78 (235 grafts
control | ¹⁰ 10G | In-situ grafts co-pump (2.5 mg
injection into acetic cannula;
the-situ grafts cell pump (1.25
mg injection into central
venous line); Fore grafts dental
anasteneous (10.0252 mg direct
graft injection). Fore grafts
proximal anasteneous (1.25-
mg injection into central
venous line after venous for
venous line after venous for anasterior pro- | V, or aoric cannula/graft
njection | Injection into aortic cannula e
control veness line / direct gri
injection before peroximal
anasistenessis construction | er
aft SPY Novadaq | NA | Postoparative graft patency | NA. | 1.7% gott revision | One-year angiography was performed in 187 patients (amaging, notices to linguistic course, 5.2 patients 122 grafts). The project the patients of the patients 122 grafts (Taylor) are interactly (2007) and course (2007) response (confidence interval), 1.1 (86–19); P = 3.23, as were other graft potency and prioris. | 5
in
None | NA | NA | (contra Book) | Singh SK, Douil ND, Chikazzena G,
et al. The Graft Imaging to Improve
Patters (GREEF) clinical trial results.
I There Cadelesses Sing.
2010;139(2):294-301, 361.4291. | | 12 Hatada Japan | Gen Thorac Cardiovase Su | g 2011 Prospective Isolate CABG (se- and off-gramp) | 6 (10 suphenous vein grafts) | BCG | NA I | v | NA | 59Y Novadaq | NA | Diagnostic accuracy to
determine graft failure | The IFH system demonstrated a satisfactory flow of all grafts, while postoperative X-tay angiography demonstrated that one SVG was 75% statesed (the others were patent). | NA | NA | None | NA | | The harmonic distortion of the
TTFM waveform can provide
better diagnostic accuracy for
detecting clinically significant
grafts than MGF and PI of TTI
and the IFI system. | Handa A, Ckamun Y, Kaneko M, et al. Compution of the waveforms of vasa-letters for vasa-letters for transit-tient forestreaty and interoperative fluorescence imaging MF naturaling comparative physics of Thomas Cardivarus Sing. 2011;59(1):4-18. Kratystang S, Aud T, Sanaki T Introsperative functionness imaging of allett transitionism from measurement during contemps were byptus garling, intervention (Phila). | | 13 Kuruyanagi Japan | Innevations (Phila) | 2012 Prospective OPCAB | 159 (435 gmfsi) | ECG | NA I | v | Into the SVC | NA | NA | Assessment of graft | NA. | 2 grads (0.5%) were revised by ICG fluorescence angiography after TTFM. | NA | None | NA | NA | Comparison of IFI to TTFM at
X-ray angiography | Autoyatage S, Acar I, Suriaci I
Intrasperative fluorescence imaging
of after transit-time flow measurement
during consumy artery bypass
grafting. Innovations (Phila). | | 14 Ferguson US | J Thorac Cardiovasc Surg | 2013 Prospective CARG (on- and off-pump) | 167 (359 gadis) | ECG | NA I | v | NA | The near infrared
fluorescence
(NIRT) system
with a complex
angiography and
perfusion analysis
(CAPA) | Fluorescence intensity (CAPA) | Education of the nature of
stenesses in the target vessel | All 359 gaths were widely passed by augiography, and 24% of the attention and 22% of the
applications with gaths derived an regional impressful perfusion change in response to by
gathing. In 165 in one internal manuscry array gaths to the life attention descending over
("O'Mentensies), 48th one change in regionality-possibility partitions, and 27 of the 40 had
competitive flowingsid. | South Vy NA | All 259 grafts were widely passer by angiography, and 24% of 6
arterial and 22% of the coplements vote grafts showed to region
responsibility portfoliose change intersponse to bypass grafting. | e
None | NA | NA | angiographically patent bypass
grafts demonstrated no change
integional myocardial perfacio
suggesting automic, but
neglactional, stenoses in thes
target vossel epicardialcoronar | Elist JT, Daggebui R, Cabill JM.
Fractional flow roservo-guided
n, corenary artery bypass grafting: can
intercoperative physiologic imaging
or guide decision making? J Therac
Cardiovasc Surg. 2013;146(4):824-
878-878. | | 35 Yamamoto Jupan | Surg Today | 2015 Prospective CABG (see- and off-pump, directive and urgent) | 40 (144 grafts) | EG | 0.05 mg/kg | v | Via a central venous catheter | HyperEye Medica
System(HEMS) | ^d NA | Visualization of the bypass
flow for prediction of graft
patency. | Negative predictive value and positive predictive value of HIMS angiography for pure particular particular vers 97.7% and \$1.8%, expectively. Those values for TTF ware 92.5% and 20.9%, respectively. | NA | Negative predictive value and positive predictive value of HELM
angiography for postoperative graft occlusion wore 97.7% and
81.3%, respectively. Those values for TTF were 92.5% and 20.0
respectively. | None | NA | NA | Compared with TTF | H, et al. Efficacy of introoperative
HyperTye Medical System
neglography for cononary artery
bypass grafting. Surg Teday.
2015;45(8):966-972. | | 16 Yamamoto Jupan | Surg Today | 2017 Retrospective CABG | 69 (177 grafts) | ECG | 0.05 mg/kg | v | Via a central venous catheter | HEMS | Plasescence intensity (the
increasing rate of ECG
intensity, average
acceleration value, and time
to peak) | Detection of grafts at risk of occlusion. | The quantitative HEMS associates showed negative and positive predictive values of 100 and 95% in ITA graft and 85.7 and 96.8% in SV/RA grafts. | NA NA | NA | Ness | NA | NA | | Yamamoto M, Nishimori H, Handa
T, et al. Quantitative assessment
technique of Hyperflye medical
system angiography for coronary
array bypass garling. Surg Today.
2017;47(2):230-217. | | 17 Nakamura Japan | Innevations (Phila) | 2019 Retrospective Rubes-saled statemally insurise direct coronery artery bypass(R-MIX-AH) | 30 | EG | 2.5mg | v | Through a central line | Finelly
Fluorescence
Imaging (Firelly) | NA | Assessment of LITA quality | Success mas, 100% | 7% modifications in surgical procedure | Postoperatie LITA patency rate was 100% | None | NA | NA | | Nukamura Y, Kuroda M, Iso Y, et al.
Left Internal Thoracic Artery Gent
Assessment by Firefly Flacescence
Imaging for Robot-Assisted
Minimally Invasive Direct Corenary
Artery Bypass. Innovations (Phila).
2019;34(2):144-150. |