APPENDICES

APPENDIX 1

Covariates:

Previously validated algorithms were used to identify patients with the following diagnoses within the administrative data:

Comorbidity	Sensitivity %	Specificity %	Reference
Diabetes	86.0	97.0	9, 10, 11
Hypertension	72.0	95.0	12
Chronic Obstructive	57.5	95.4	13
Pulmonary Disease (COPD)			
Congestive Heart Failure	84.8	97.0	14
(CHF)			
Coronary Artery disease	88.8	92.8	15,16
(CAD)			
Dementia	79.3	99.1	17
Frailty	The Johns Hopkins ACG® System (Version 10)		8

References

- 8. Weiner JP, Abrams C. The Johns Hopkins ACG® System: Technical Reference Guide Version 10.0. 2011.
- 9. Leong A, Dasgupta K, Bernatsky S, et al. Systematic review and meta-analysis of validation studies on a diabetes case definition from health administrative records. PLoS One. 2013 Oct 9;8(10):e75256.
- 10. Hux JE, Ivis F, Flintoft V, et al. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes care. 2002;25(3):512.

- 11. Lipscombe LL, Hwee J, Webster L, et al. Identifying diabetes cases from administrative data: a population-based validation study. BMC Health Serv Res. 2018 May 2;18(1):316.
- 12. Tu K, Campbell NR, Chen ZL, et al. Accuracy of administrative databases in identifying patients with hypertension. Open medicine. 2007;1(1):e18.
- 13. Gershon A, Wang C, Guan J, et al. Identifying individuals with physician diagnosed COPD in health administrative databases. COPD. [Comparative Study Research Support, Non-U.S. Gov't]. 2009 Oct;6(5):388-94.
- 14. Ko DT, Mamdani M, Alter DA. Lipid-lowering therapy with statins in high-risk elderly patients: the treatment-risk paradox. Jama. 2004;291(15):1864.
- 15. Roffi M, Mukherjee D. Treatment-risk paradox in acute coronary syndromes Eur Heart J. 2018 Nov 7;39(42):3807-3809
- 16. Austin PC, Daly PA, Tu JV. A multicenter study of the coding accuracy of hospital discharge administrative data for patients admitted to cardiac care units in Ontario. Am Heart J. 2002;144(2):290-296.
- 17. Jaakkimainen RL, Bronskill SE, Tierney MC, et al. Identification of Physician-Diagnosed Alzheimer's Disease and Related Dementias in Population-Based Administrative Data: A Validation Study Using Family Physicians' Electronic Medical Records. J Alzheimers Dis. 2016;54(1):337-349.