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EDITORIAL
The meteoric rise of artificial intelligence 
(AI) to the forefront of healthcare innovation 
has unearthed an array of avenues for surgical 
researchers to pursue. Applications found 
throughout the surgical patient pathway 
mean AI offers new- found support systems for 
clinical decision- making. Indeed, a growing 
number of technologies are entering clin-
ical practice,1 with a recent review evaluating 
randomised controlled trials of diagnostic 
prediction tools suggests that potential bene-
fits of AI that contemporary healthcare stands 
to realise.

However, the pathway to translation to 
the bedside for these technologies is vari-
able. Captured aptly in a recent editorial, 
there are clear examples of AI technolo-
gies already approved for clinical use in the 
USA, both with and without evaluation 
through randomised controlled trials.2 This 
speaks to a wider problem of evaluation in 
AI innovation, where insufficient reporting 
in randomised controlled trials prompted 
the development of several reporting guide-
lines, examples including the Consolidated 
Standards of Reporting Trials- AI and Stan-
dard Protocol Items: Recommendations for 
Interventional Trials- AI guidelines advising 
the minimum reporting standards for clin-
ical trials and protocols, respectively. Simi-
larly, guidance for the initial stages of AI 
development has been developed, namely, 
the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD- AI) guidelines for 
machine learning (ML) prediction models.3

Yet, when one looks at the process of AI 
translation, from in silico to clinical trial, 
an evaluation chasm becomes obvious, with 
guidance lacking on studies reflecting stages 
2a and 2b of the IDEAL (Idea, Develop-
ment, Exploration, Assessment, Long- term 
study) collaborative. These stages reflect the 

refinement and preparation for larger clin-
ical studies, which are influenced by factors 
from the operator including learning curves 
or training; the health system the technolo-
gies enter into or organisational factors such 
as integration into clinical workflows. Study 
design features such as patient selection for 
both training and testing an intervention, and 
even the AI model itself, are crucial factors to 
consider prior to large- scale testing.

Vasey and colleagues have identified a 
gap in the reporting guidelines for evalu-
ating AI- driven decision support systems, 
producing reporting guidelines to support 
the evaluation of their early stages. This 
was achieved through an international, two- 
round modified Delphi consensus process 
producing a 17 AI- specific item and 10 generic 
item reporting guidelines (DECIDE- AI), 
informing the reporting of early- stage clinical 
studies of AI- based decision support systems 
in healthcare.

The systems perspective taken by Vasey et al 
frame AI decision- support systems as complex 
interventions.4 This perspective clearly eluci-
dates the importance of understanding of the 
workflow or clinical process interventions are 
intended to enter, alongside the evaluation 
setting of the AI. Reporting of such demon-
strates the setting, or even system- specific 
evaluation in the selected trial which may be 
important in judging intervention efficacy 
when applied to the same clinical problem in 
alternate health systems or settings.

Furthermore, the emulation of aviation or 
military human factors appraisal is another 
value of the DECIDE- AI guidelines, partic-
ularly as the augmentative nature of AI 
decision- support systems rely on human- 
computer interactions. It is evident, for 
example, in surgery that learning- curves 
of surgeons influence clinical outcomes,5 
meaning complex interventions including 
AI- based tools must account for this during 
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the evaluation process. Failing to do so may result in 
intervention failure in larger clinical trials, at cost to 
researchers and developers, but with perhaps greater cost 
to trial participants.

Considering these factors, rigorously and systemati-
cally, are undoubted means of improving translation of 
AI interventions from bench- to- bedside. The vitality of 
which is two- fold; pursuit of evidence- based medicine 
principles for safe evaluation of a technology, testing and 
developing them in real- world health systems, coupled 
with more accurate determination of efficacy and effec-
tiveness, progressing evaluation towards more realistic 
settings.

One cannot claim perfection when deciding on 
reporting guidelines, and Vasey and colleagues recognise 
the known limitations as they achieved consensus from 
their spectrum of experts. Yet, it is clear that they have 
provided a robust foundation to foster systematic and 
transparent reporting to guide the early- stage clinical 
evaluation of AI technologies. Recognition and improve-
ment of the translation processes’ weaknesses certainly 
stand to aid AI innovators of tomorrow, with clinical divi-
dends to follow.
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