Discussion
This review revealed fluorescence imaging to enhance the identification of target structures, relative to naked-eye examination or standard white-light imaging, for all five procedures that we evaluated and in the majority of previously published studies, including RCTs conducted on cholangiography and parathyroid identification. Especially for hepatobiliary surgery and (para)thyroidectomy, comparative studies have also documented the advantages of employing fluorescence imaging to enhance the visualisation of anatomical structures and, in doing so, improve short-term and long-term postoperative outcomes. Our IDEAL framework analysis indicates that currently published evidence for fluorescence cholangiography and parathyroid identification is in stage 3, whereas for hepatic segmentation, it is at stage 2b and ready to proceed to well-designed RCTs. For lung segmentation and ureterography, using fluorescence imaging requires further prospective, collaborative, cohort studies to reach final consensus on the best methods and outcome measures to use before proceeding to an RCT (stage 2a), especially for ureterography, for which newer intravenously injected fluorophores that collect in urine may totally alter the standard route of dye administration.
Fluorescence cholangiography using ICG was originally developed for open surgery.37 38 Since fluorescence imaging by intravenous injection enables radiation-free and incisionless intraoperative cholangiography, the best indication for this technique is LC, the most common surgical procedure performed worldwide (750 000–1 000 000 cases annually in the USA alone39). In fact, after the first clinical application of fluorescence cholangiography for LC in 2009,40 its safety and efficacy have been reported for more than 3000 cases, mainly during laparoscopic or robot-assisted surgery. Recently, the superiority of fluorescence cholangiography over standard white-light imaging at delineating the extrahepatic biliary anatomy was demonstrated in an international, multicentre RCT,8 leading to the recommendation that this technique be used as ‘an adjunct to white light alone’ to limit the risk and severity of bile duct injury during LC in multisociety practice guidelines published in 2020.39 Although it may be statistically difficult to orchestrate an RCT large enough to identify a statistically significant impact of fluorescence cholangiography, in terms of reducing the incidence of such a rare but potentially catastrophic complication as bile duct injury during LC (0.15%–0.36%39), further large studies using registries and other similar databases41 should allow for rare favourable and unfavourable events to be revealed as well as educational and cost-efficiencies, and the limitations of fluorescence cholangiography where conventional radiographic cholangiography is needed, moving the use of fluorescence imaging for this purpose to the highest development stage (IDEAL stage 4). Already documented have been reductions in operative times.42 43
Injecting ICG into portal branches (positive-staining technique21 22) to achieve hepatic segmentation is a reappraisal of the conventional dye-staining technique.44 Similarly, administering ICG intravenously following closure of the portal pedicles (negative-staining technique21) builds on the Glissonian approach.45 Since fluorescence imaging enables surgeons to visualise targeted hepatic segments with higher signal-to-background ratios than the naked-eye examinations and standard white-light imaging used with conventional techniques,46 47 the number of publications on both of these newer techniques has increased dramatically in the past 3 years. The expected role of fluorescence-guided hepatic segmentation is to aid the accurate identification of intersegmental planes during hepatectomy procedures which, in turn, should enhance surgical outcomes like operation time, the incidence of complications associated with bile leaks and ischaemia in the remnant liver and tumour-free surgical margins, as suggested by previous prospective studies.20 23–26 The negative-staining technique is simple to perform, while the feasibility of the positive-staining technique seems to be improved by employing preoperative puncture before insufflation48 and intracorporal puncture by robotic manipulation.49 Thus, the IDEAL framework recommends multicentre RCTs to compare the efficacy of anatomic hepatectomies performed with vs without ICG fluorescence imaging for hepatic segmentation.
Interestingly, two approaches—intravenously administering ICG after interrupting blood flow into tumour-bearing lung segments50 and directly injecting ICG into the target bronchi51—can be used for fluorescence-guided lung segmentation, as for hepatic segmentation. The main objective of performing anatomical resections based on lung segmentation is to balance cancer curability and the respiratory function of the remnant lung, reducing the incidence of postoperative complications associated with ischaemia and air leaks.27 Since the former technique—visualising targeted lung segments as non-fluorescing regions—is simple and well established, it is currently recommended that the efficacy of using fluorescence imaging for lung segmentation is compared, in terms of patient outcomes, with lung resections performed using the conventional inflation-deflation method in prospective multicentre studies and RCTs. Other issues usually resolved prior to achieving IDEAL stage 2b have yet to be resolved, however—like which outcomes to use and a consensus definition of the procedure—which is why we still consider this procedure in IDEAL stage 2a, despite the call for RCTs. As for the intrabronchial injection of ICG, although its use with fluorescence imaging for lung segmentation has the potential to improve the signal-to-background ratio, which could decrease surgical times relative to injecting ICG intravenously, additional studies are needed to create consensus on the timing and dose of intravenously injected ICG prior to its adoption in larger prospective studies.
The purpose of using fluorescence imaging for intraoperative ureterography is to prevent injuries to ureters that usually are hidden behind overlying retroperitoneal tissues. Such ureteral injury can occur during a variety of surgical procedures to treat colorectal, gynaecological and urological diseases. Urinary tract injection of ICG has been used as the main approach for fluorescence imaging, although it requires catheterisation into the urinary system.52 53 Another approach is to use the urinary excretion of MB following its intravenous injection, which can omit urinary access but currently requires prototype camera systems fine tuned to detect fluorescence signals in the 680 nm emission range.54 55 Multispectral fluorescence systems are currently being developed commercially, and this will allow for more widespread utilisation of MB fluorescence imaging for ureters in the near future. For further clinical installation of this technique, it is essential to clarify the advantages and disadvantages of each approach based on the patient’s condition and the specific surgical procedure being performed. On the other hand, novel fluorophores optimised for use in ureterography are also being developed28 29; and, while promising outcomes have been reported in early-phase clinical trials, the potential for future development of fluorescence imaging to visualise ureters ultimately largely depends on its cost-benefit performance in preventing urinary tract injuries.
Fluorescence imaging to identify parathyroid glands is unique, in that it relies solely on the glands’ autofluorescence, which makes the procedure easier and safer than other imaging techniques that require the administration of a fluorogenic agent. In contrast, fluorescence imaging using ICG enables the assessment of blood perfusion, which may enhance the prediction and prevention of postoperative hypocalcaemia. In this field, further large studies need to both identify conditions requiring the use of ICG and evaluate the learning curve and cost efficiency of both fluorescence techniques. Although the mechanism behind ICG uptake into glandular tissues remains unclear, this phenomenon also can be used for near-infrared fluorescence imaging of the thyroid and adrenal grand.56 In this review, parathyroid identification was selected as a representative use of fluorescence imaging in endocrine surgery because it was often difficult with other endocrine surgery procedures to determine whether the aim of fluorescence imaging was to identify the gland or the tumour.
Advantages of using the IDEAL framework to overview the development status of fluorescence imaging are not only to recommend the optimal design of future studies in each research area but also to promote information sharing beyond surgical specialties, which should lead to further evolution and dissemination of the technique for intraoperative anatomy visualisation. In this regard, liver surgeons directly communicating their experiences and results using both positive and negative staining techniques for hepatic segmentation have already aided thoracic surgeons in the clinical development of fluorescence-guided lung segmentation. The process of achieving consensus on the intravenous versus intrabiliary injection of ICG will similarly serve as a reference for the future development of ureterography with fluorophores, whether given intravenously or via a catheter directly into ureters. On the other hand, ureteral imaging using urinary stents with a fluorescence resin30 may accelerate the clinical application of fluorescing biliary stents.
Our analysis has also revealed regional trends in publications and reported cases which, in turn, can elucidate the current dissemination status of these various surgical procedures enabled by fluorescence imaging as well as how commonly each fluorescence imaging technique is being used. For example, fluorescence cholangiography and parathyroid identification (both rated IDEAL stage 3) were introduced in specific regions in the world. However, recent reports come almost equally from the USA, Europe and Asia. In contrast, publications on hepatic segmentation remain largely limited to Asian countries because, even prior to the introduction of fluorescence imaging, anatomic segmentectomy of the liver mainly was advocated for in Asian rather than Western countries. The dissemination of information on fluorescence imaging techniques using the latest near-infrared imaging systems should further contribute to widening the applications of these specialised surgical procedures all over the world.
In conclusion, the current development status of intraoperative fluorescence imaging for visualising anatomy during the five surgical procedures analysed herein lies between IDEAL stage 2a and IDEAL stage 3, with development most advanced for hepatobiliary tract and parathyroid visualisation, intermediate for hepatic segmentation and least advanced for lung segmentation and visualising ureters. For each of these procedures, overviewing the current accumulation of evidence employing the IDEAL framework provides guidance regarding which kinds of subsequent study are needed for each fluorescence imaging technique to aid its development into an essential intraoperative navigational tool.