Introduction
Valvular heart diseases are increasing worldwide, with aortic stenosis (AS) being the most prevalent.1–3 Surgical aortic valve replacement (AVR) is the standard treatment for severe AS1 2 and is performed with bioprosthetic (BV) or mechanical (MV) valves.4 Historically, international guidelines recommended BV for patients aged 65 years and over due to their shorter life expectancy and reduced likelihood of valve degeneration requiring reoperation;5 MV was recommended for patients under 65 years due to increased longevity of the valve, although it requires lifelong anticoagulant use and therefore poses the risk of major hemorrhage.4–6 Current guidelines have moved away from age-specific recommendations, and now stipulate the use of BV for patients with lower life expectancy and those unlikely to adhere to, or with major contraindications to, anticoagulant therapy.4 7 Early versions of bioprosthetic valves failed in as little as 5 years, particularly among young patients,8 9 and lasted for up to 10 years, while current valves last for up to 15 years.10 11 In the last decade, there has been increased use of BV worldwide,12 coinciding with a substantial reduction in MV implantation.13–18
Outcomes of AVR are typically measured by short-term (30–90 days) or longer-term (≥12 months) morbidity, mortality and reoperation rates. Most studies report on single-center,11 19 restricted10 20–23 or small cohorts23 and most have less than 10 years of follow-up postimplantation.20 21 23 Previous studies examining age-specific outcomes have shown patients receiving BV have fewer long-term anticoagulant-related events such as hemorrhage (a major driver of mortality), but significantly higher major adverse prosthesis-related events and reoperation.10 14 22 23 Among studies examining outcomes across all age groups, the same findings were observed.11 19 24 Recent systematic reviews examining outcomes in patients aged 50–70 years have conflicting conclusions around patient survival.25 26 A review of observational studies found no significant differences in long-term patient survival based on valve type25 but a more recent analysis of randomized controlled trials (RCTs) and propensity score matched observational studies showed increased survival in patients receiving MV.26
Valve choice in younger patients is of particular interest because of the potential trade-offs between reoperation risk with BV and the risk of major complications with MV.27 Given the increasing prevalence of valvular heart disease,28 it is important to assess the real-world impact of valve choice in relation to age.1 29 Furthermore, as transcatheter AVR (TAVR) is being adopted increasingly as a minimally invasive approach for bioprosthetic valves, it is important to establish a benchmark for outcomes of surgical AVR.13 30 Therefore, we sought to use linked, administrative health data from the state of New South Wales (NSW), Australia, to provide real-world evidence on age-stratified outcomes of patients receiving BV and MV from surgical AVR.